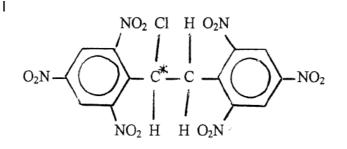

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

SUMMER 2011

CHEMISTRY - CH4

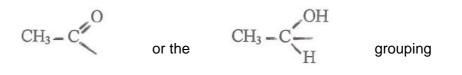
Q.1	(a)	(i)	Chromophore Yellow transmitted (or reflected) / other colours (e.g. blue and red) absorbed			
		(ii)				
	(b)	(i)				
			NO2 ⁺	H NO ₂	NO ₂	



(iii) H_2SO_4 is losing a proton (to another species and becoming an HSO_4^- ion, acids are proton donors). [1]

(c) The benzene ring is more stable than an alkene because of its delocalised electron structure / π electron system / OWTTE (1) If benzene underwent addition this would mean disrupting this stable electron system and this would require relative more energy / activation energy would be (much) higher. (1) [2]

- QWC Legibility of text; accuracy of spelling, punctuation and grammar; clarity of meaning. [1]
- (d) (i) There is no rotation about a double bond / each 'end' of the double bond has two different 'groups' attached to it [1]
 - (ii)


(ii)

- [1]
- II They are mirror image forms (1) that rotate plane polarised light in opposite directions (1) [2]
- III Elimination [1]

Total [13]

- Q.2
- (a) (i) Sodium borohydride / sodium tetrahydridoborate(III) / lithium aluminium hydride / sodium and ethanol / zinc and ethanoic acid (accept correct formulae) [1]
 - (ii) The absorption at ~ 1700 cm⁻¹ is due to the C = O bond (1) As the reaction proceeds the intensity of this absorption becomes smaller because the butanal is being used up / butan-1-ol does not contain a C = O bond (1) [2]

[1]

- (iv) So that a valid comparison can be made between results from other teams / OWTTE
 (do not accept 'fair test')
- (c) There is a balance between the 'carbon' produced by burning and the 'carbon' absorbed by the plant (1)
 When butan-1-ol is burnt carbon dioxide is produced, but this is used by plants / in photosynthesis to produce cellulose (1)
- (d) (i) $CH_3CH_2CH_2CH_2OH + CH_3COOH \rightarrow CH_3COOCH_2CH_2CH_2CH_3 + H_2O$ [1] accept C_4H_2OH but not $C_4H_{10}O$ - functional groups must be present
 - (ii) (concentrated) sulphuric acid / H₂SO₄ / hydrogen chloride (gas) / HCl(g) [1]

do not accept H₂SO₄(aq) / HCI

Total [12]

- **Q.3** (a) (Free) radical
 - (b) $2C_3H_6 + 9O_2 \rightarrow 6CO_2 + 6H_2O$ [1]
 - (c) (i) It is providing a pair of electrons to bond to a proton / acting as a lone pair donor / proton acceptor [1]
 - (ii) I A process of boiling / evaporation and condensation without loss (of reactants) [1]
 - II By using an electrical heater / or a suitable heating bath / heating mantle - do not accept 'water bath' [1]
 - (d) Halothane would cause the most damage as it contains a weaker C-CI / C-Br bond (1), which is broken in the upper atmosphere (1) (producing radicals that attack ozone).
 Desflurane does not contain C-CI / C-Br bonds, only the more stable C-F bonds. [2]

- (e) (i) Purple colour / solution / complex do not accept 'precipitate' [1]
 - (ii) I

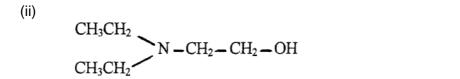
Compound	Colour given with Universal Indicator paper	Reaction with sodium hydrogencarbonate solution
propofol	yellow / orange	no reaction
compound L	~~~~~~	~~~~~~
compound M	orange / red	fizzing

One mark for each correct column

II Gas evolved turns 'lime water' milky

[1]

[1]


[2]

[1]

[1]

(f) (i)

(g) It would melt at a lower temperature (than 89 °C) / below 89 °C (1) and over a range of temperature / not a sharp melting temperature (1) [2]

Total [15]

- **Q.4** (a)
- Stereoisomerism is where the compound has the same structural formula but whose atoms / groups take up different positions in space / in three dimensions (1)

$$H C C OCH_3$$

$$H C C OCH_3$$

$$H C C OCH_3$$

[2]

[2]

(ii) The signal at 3.8 δ due to the methoxy protons (1) would disappear and be replaced by a signal at 11.0 δ (1) due to the O<u>H</u> protons (1). These protons would have peak area 2 (rather than peak area 6 for the methoxy protons) (1) The signal at 6.9 δ would be (largely) unchanged (1) as the C –H bond is not affected by the hydrolysis of the ester. [5]

QWC Selection of a form and style of writing appropriate to purpose and to complexity of subject matter [1]

- (iii) $C_6H_8O_4 \rightarrow 144$ 113 is 31 less, could be CH₃O (1) ion could be $C_5H_5O_3^+$ (1)
- (b) (i) Raw material prices become cheaper / reduce the reaction temperature / use a method where the % yield is increased [1]
 - Use a different (more economic) starting material / find a way of reducing the time taken for fermentation / effect an easier separation method.
 Do not accept reference to increased amounts of enzyme /bigger batch. [1]
 - (iii) Number of moles of fumaric acid expected = 140 (1)

Actual number of moles of fumaric acid obtained = $\frac{13.0 \times 1000}{116}$ = 112 (1)

% Yield =
$$\frac{112 \times 100}{140}$$
 = 80 (1)

Alternatively

180 g / kg of glucose give 2 x 116 g / kg of fumaric acid (1)

$$\therefore$$
 1 g / kg of glucose gives 2×116 g / kg of fumaric acid 180

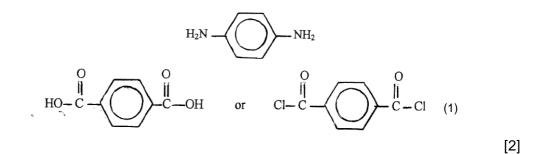
:. 12.6 kg of glucose gives $2 \times 116 \times 12.6$ kg of fumaric acid = 16.2(4) kg (1) 180

% Yield =
$$\frac{13.0 \times 100}{16.2}$$
 = 80 (1) [3]

	(iv)	starting material (1) e.g. ethanol / ethanal OR ethyl ethanoate OR ethanoyl chloride		
		reagent (1) Cr ₂ O ₇ ²⁻ / H ⁺ acid(aq) / base (aq) followed by water acidification		
		type of reaction (1) oxidation / redox hydrolysis hydrolysis [3		
		II platinum / nickel [1		
(c)	e.g.	Tollens reagent - silver mirror		
		OR 2,4 - dinitrophenylhydrazine - yellow/ orange / red precipitate		
		OR Fehling's / Benedict's reagent - brown / red precipitate [1		
		Total [20]		

Q.5 (a) (i)

catalyst - aluminium chloride (1)


(ii) Mass of methylbenzene =
$$27.6 \text{ g}$$
 (1)

Moles of methylbenzene =
$$\frac{27.6}{92.1}$$
 = 0.30(0) (1)

 \therefore 0.30 mole of C₆H₅CH₂Cl should be made this will have a mass of 0.30 x 126.6 = 38.0 g (1)

 \therefore Mass of flask + product needs to be 120.4 + 38.0 = 158.4 g (1) [4]

- (iii) I potassium cyanide
 - II lithium tetrahydridoaluminate(III) / lithium aluminium hydride [1] (accept correct formulae)
- (b) The nitrogen atom is electron rich / has a lone pair (1) and will act as a proton acceptor / electron pair donor (1) [2]
- (c) 2-Phenylethylamine reacts with nitrous acid giving an alcohol (1) and evolving nitrogen gas as bubbles (1)
 4-Ethylphenylamine gives a diazonium compound (1) [3]
- (d)

(e) (i) 2-amino-3-hydroxypropanoic acid

(ii) Hydrogen bonding occurs because of the difference in electronegativity between hydrogen and oxygen / nitrogen(in O-H and N-H bonds), (1). leading to polar covalent bonds / δ +, δ - (1) There are attractive forces between the oxygen or nitrogen of one molecule and the hydrogen atom bonded to an oxygen or nitrogen atom of another molecule (1) [3]

(Marks can be obtained from a suitable diagram)

QWC Information organised clearly and coherently, using specialist vocabulary when appropriate

Total [20]

[1]

[1]

[2]

[1]